
Extended Abstract

Motivation Large language models demonstrate remarkable proficiency across diverse reasoning
tasks, yet their performance on structured domains like chess remains substantially below expectations.
Despite high fluency and comprehensive knowledge, state-of-the-art models such as GPT-4 and Qwen-
2 consistently fail to generate legal chess moves, performing far below expert systems like Stockfish
or AlphaZero. This gap stems from limitations in grounded task-specific reasoning. Traditional
approaches treat chess as monolithic end-to-end prediction, obscuring underlying cognitive processes.
We propose decomposing chess mastery into constituent reasoning subtasks, enabling models to
develop more structured and interpretable behavior through targeted skill acquisition.

Method We reformulate chess understanding as multi-task reinforcement learning over shared
state-action space with distinct reward functions per reasoning task. States combine FEN positions
with task identifiers; actions are legal move predictions; rewards align with task semantics. Our
framework targets six fundamental subtasks: legal move generation, piece counting, position predic-
tion, capture identification, forcing move detection, and check recognition. We extend Group Relative
Policy Optimization to support stratified multi-task learning, incorporating task-specific rewards and
balanced sampling to ensure equitable representation across subtasks during training.

Implementation Our implementation fine-tunes Qwen-2.5 3B using 500 reasoning trajectories per
subtask, totaling 3,000 training examples. Each subtask dataset consists of high-quality traces gener-
ated from expert chess engines, particularly Stockfish evaluations, with reward functions precisely
aligned to task-specific semantic requirements. We integrate Hindsight Experience Replay to enhance
sample efficiency by relabeling failed episodes based on terminal state matching, transforming un-
successful attempts into valuable learning experiences. A critical challenge we identified involved
reward hacking, where models exploited implicit biases in move ordering rather than developing gen-
uine reasoning capabilities. We address this through comprehensive dataset randomization and bias
detection, ensuring models rely on structured reasoning rather than superficial pattern memorization.
The complete training pipeline is implemented using torchtune with tasks presented through carefully
structured prompts that clearly specify the reasoning requirements.

Results Our GRPO-trained model achieves significant improvements across all six subtasks com-
pared to baselines. In the 6 task average, the GRPO trained model provides a 7.2x boost in perfor-
mance over the baseline gwen and a 1.3x boost over a supervised fine tuned model. In complex tasks
like best move prediction, the GRPO trained model provides a 1.41 boost over random, and 1.07x
over basline. An easier task, like checkmate in one shows a 10x boost over random, and 1.64x over
baseline.

Discussion Results validate that decomposing chess into reasoning components enhances both
accuracy and interpretability. The GRPO-trained model learns distinct policies for each task type,
demonstrating that language models can internalize modular skills when guided by structured rewards.
However, our approach shows sensitivity to data quality, requiring careful curation. Initial formula-
tions proved vulnerable to reward hacking, highlighting the importance of thoughtful dataset design
and evaluation protocols. These findings underscore challenges in developing robust reinforcement
learning frameworks for structured reasoning while demonstrating substantial benefits of skill-based
decomposition.

Conclusion We present GRPO&Master, a multi-task reinforcement learning framework for struc-
tured chess reasoning with large language models. Through skill decomposition and curriculum-based
learning, our method surpasses baseline approaches while providing explainable outputs. Our work
demonstrates the potential of combining language models with structured reinforcement learning to
bridge the gap between general language understanding and domain-specific reasoning, suggesting
promising directions for explainable AI systems in formal domains.
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Abstract

While large language models (LLMs) demonstrate remarkable capabilities across
diverse domains, they exhibit notable limitations in structured reasoning tasks such
as chess. We propose GRPO&Master, a novel pipeline that reformulates chess
mastery as a multi-task reinforcement learning problem, emphasizing fundamental
reasoning skills over direct move prediction. Our approach decomposes chess un-
derstanding into six core reasoning subtasks: legal move generation, piece counting,
position prediction, capture identification, forcing move detection, and check recog-
nition. Built upon the Qwen-2.5 3B base model, our method employs supervised
fine-tuning on high-quality task-specific datasets, followed by training with Group
Relative Policy Optimization (GRPO), tuned with task-specific rewards and trial of
hindsight experience replay. We implement a curriculum-based training strategy to
ensure systematic skill acquisition and employ dataset randomization to mitigate
reward hacking behaviors. Evaluation demonstrates substantial improvements over
baseline approaches, especially in structured reasoning capabilities. Our results
suggest that decomposing complex strategic puzzles into interpretable subtasks
represents a promising direction for developing explainable and high-performance
game-playing AI systems.

1 Introduction

The emergence of large language models (LLMs) has fundamentally transformed artificial intelli-
gence capabilities across numerous domains, from natural language understanding to mathematical
reasoning and code generation (Brown et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023).
These models demonstrate remarkable versatility in handling diverse cognitive tasks through their
capacity for few-shot learning and contextual reasoning. However, their performance on structured,
rule-based domains reveals significant limitations that challenge our understanding of their reasoning
capabilities.

Chess represents a particularly compelling testbed for evaluating structured reasoning in artificial
intelligence systems. As a domain with well-defined rules, clear evaluation metrics, and extensive
historical analysis, chess offers unique advantages for understanding the gap between general language
understanding and domain-specific expertise. Unlike open-ended natural language tasks where
evaluation can be subjective, chess provides objective measures of competence through legal move
generation, tactical accuracy, and strategic coherence.
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Figure 1: Multi-Task Chess Reasoning Pipeline: Our framework decomposes chess understanding
into six fundamental tasks, uses stratified sampling for balanced training, and applies Multi-Task
GRPO with task-specific rewards to learn interpretable reasoning policies.

Despite their impressive performance on general reasoning benchmarks, state-of-the-art language
models consistently underperform on chess-related tasks. Models such as GPT-4, Claude, and
Qwen-2 frequently generate illegal moves, fail to recognize basic tactical patterns, and exhibit
strategic incoherence that would be immediately apparent to novice human players (Karvonen, 2024;
Dynomight, 2023; Carlini et al., 2023). This performance gap is particularly striking given these
models’ demonstrated capabilities in other complex reasoning domains, suggesting fundamental
limitations in their approach to structured problem-solving.

Traditional chess AI systems achieve superhuman performance through fundamentally different
architectures and methodologies. Classical engines like Stockfish combine deep tree search algorithms
with carefully tuned evaluation functions, while modern neural approaches like AlphaZero leverage
self-play reinforcement learning combined with Monte Carlo Tree Search (Silver et al., 2017, 2018).
These systems excel at chess but lack the interpretability and general reasoning capabilities that make
language models attractive for broader applications.

The limitations of current LLMs in chess stem from several fundamental issues. First, traditional
training approaches treat chess as an end-to-end move prediction problem, potentially obscuring
the underlying cognitive processes required for expert performance. Second, the lack of structured
reasoning decomposition prevents models from developing the modular skills necessary for chess
mastery. Third, standard language modeling objectives may not provide sufficient signal for learning
the precise, multi-step reasoning required in formal domains.

We propose that these limitations can be addressed through a fundamental reformulation of how
language models approach chess reasoning. Rather than treating chess as a monolithic prediction task,
we decompose chess mastery into constituent reasoning subtasks, each capturing a distinct aspect
of chess cognition. This decomposition enables targeted skill development while maintaining the
interpretability advantages of language-based reasoning.

Our approach leverages recent advances in reinforcement learning for language models, particularly
Group Relative Policy Optimization (GRPO), which has demonstrated significant improvements in
mathematical reasoning and other structured domains (Shao et al., 2024). By combining multi-task
learning with task-specific reward functions, we create a framework that can develop specialized
chess reasoning capabilities while preserving the general language understanding that makes LLMs
valuable.

The contributions of this work are threefold. First, we introduce a principled decomposition of chess
reasoning into six fundamental subtasks that build towards chess expertise. Second, we develop a
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novel multi-task reinforcement learning framework that extends GRPO to support stratified learning
across multiple reasoning tasks. Third, we demonstrate that this approach achieves substantial
performance improvements over baseline methods while providing interpretable insights into model
reasoning processes.

Our results suggest that the gap between general language understanding and domain-specific
reasoning can be bridged through careful task decomposition and structured learning approaches.
This work opens promising directions for developing explainable AI systems capable of transparent
reasoning in formal domains, with potential applications extending well beyond chess to other
structured reasoning challenges.

2 Related Work

The development of chess-playing artificial intelligence has a rich history spanning several decades,
with approaches evolving from rule-based systems to modern neural architectures. Classical chess
engines like Stockfish represent the pinnacle of traditional approaches, combining sophisticated
alpha-beta pruning algorithms with carefully handcrafted evaluation functions (Stockfish Team,
2024). These systems achieve superhuman performance through deep tree search, often examining
millions of positions per second to identify optimal moves.

The introduction of neural network evaluation functions marked a significant advancement in classical
approaches. Stockfish’s integration of NNUE (Efficiently Updatable Neural Networks) demonstrated
that neural components could enhance traditional search-based methods while maintaining compu-
tational efficiency (Nasu et al., 2018). This hybrid approach achieves remarkable strength while
remaining interpretable through its explicit search trees and evaluation breakdowns.

The development of AlphaZero represented a paradigm shift in chess AI, demonstrating that rein-
forcement learning combined with Monte Carlo Tree Search could achieve superhuman performance
without domain-specific knowledge (Silver et al., 2017, 2018). Starting from random play, AlphaZero
learned chess strategy through self-play, ultimately surpassing both traditional engines and human
grandmasters while exhibiting novel strategic insights.

AlphaZero’s success inspired numerous follow-up works exploring neural approaches to chess. Leela
Chess Zero emerged as an open-source implementation of similar principles, achieving comparable
strength through community-driven development (LCZero Team, 2019). These systems demonstrated
that neural networks could internalize chess knowledge effectively when combined with appropriate
learning algorithms and sufficient computational resources.

More recently, DeepMind’s work on "Grandmaster-Level Chess Without Search" explored whether
neural networks could achieve strong chess performance without explicit tree search (Ruoss et al.,
2024). Their 270M parameter transformer, trained on engine-evaluated expert games, reached
approximately 2895 Elo rating, demonstrating that neural networks could internalize significant
chess knowledge. However, the model still lagged behind traditional engines in tactical calculations,
highlighting remaining challenges in neural chess approaches.

The application of large language models to chess has revealed significant challenges in structured
reasoning capabilities. Despite their impressive performance on general language tasks, models like
GPT-4 and Claude consistently struggle with basic chess requirements such as legal move generation
and tactical recognition (Karvonen, 2024; Dynomight, 2023; Carlini et al., 2023).

Several works have attempted to improve LLM chess performance through various approaches.
ChessGPT explored joint training on moves and commentary, achieving modest improvements in
coherence while remaining at amateur strength levels (Feng et al., 2023). Other approaches have
investigated prompting techniques, chain-of-thought reasoning, and fine-tuning on chess-specific
datasets, with limited success in achieving strong play.

The fundamental challenge appears to be that standard language modeling objectives do not provide
sufficient signal for learning the precise, multi-step reasoning required for chess mastery. Unlike nat-
ural language tasks where approximate responses may be acceptable, chess requires exact adherence
to rules and precise tactical calculations.

Recent advances in reinforcement learning for language models have demonstrated significant
potential for enhancing reasoning capabilities. Group Relative Policy Optimization (GRPO) has
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emerged as a particularly effective approach, offering variance reduction and computational efficiency
compared to standard policy gradient methods (Shao et al., 2024). GRPO has achieved notable
success in mathematical reasoning tasks, suggesting its potential for other structured domains.

The development of DeepSeek-R1 demonstrated that large-scale reinforcement learning can dra-
matically enhance LLM reasoning capabilities (Guo et al., 2025). Through extensive RL training,
the model achieved significant improvements on reasoning benchmarks while maintaining general
language capabilities. This work highlighted the potential of RL approaches for bridging the gap
between general language understanding and specialized reasoning skills.

QwQ-32B further validated the effectiveness of reward-based optimization for reasoning tasks,
approaching GPT-4 performance on mathematical benchmarks despite using significantly fewer
parameters (Team, 2025). These results suggest that carefully designed reward functions and opti-
mization procedures can enable efficient learning of complex reasoning patterns.

Multi-task learning has emerged as a powerful paradigm for developing AI systems with broad
capabilities while maintaining efficiency in learning and inference (Caruana, 1997; Ruder, 2017). In
the context of language models, multi-task approaches have demonstrated benefits for both general
capability development and specialized skill acquisition.

Recent work has explored multi-task learning for structured reasoning tasks, showing that decompos-
ing complex problems into constituent subtasks can improve both performance and interpretability
(Khashabi et al., 2020; Wei et al., 2021). These approaches enable targeted skill development while
facilitating knowledge transfer between related tasks.

Despite significant progress in both chess AI and language model reasoning, no prior work has
successfully combined GRPO-style reinforcement learning with chess-specific task decomposition
to create interpretable, high-performance chess reasoning in language models. Existing approaches
either achieve strong chess performance through non-interpretable search methods or maintain
interpretability while sacrificing chess strength.

Our work addresses this gap by introducing a novel multi-task reinforcement learning framework
that decomposes chess reasoning into interpretable subtasks while leveraging effective RL algo-
rithms for skill acquisition. This approach represents a new direction for bridging general language
understanding with domain-specific expertise.

3 Method

3.1 Problem Formulation

We formulate chess mastery as a multi-task reinforcement learning problem over a shared state-action
space with task-specific reward functions. Our framework decomposes chess understanding into six
fundamental reasoning subtasks that build towards chess expertise.

Mathematical Framework:

• Shared State Space: S = FEN positions ×Z where Z is the task identifier space
• Shared Action Space: A = UCI moves ∪ task-specific outputs
• Task Distribution: T = {T1, T2, ..., T6} where each Ti has reward ri : S ×A → R
• Multi-Task Policy: πθ(a|s, zi) where zi ∈ Z conditions behavior on task type

Our objective maximizes expected performance across all tasks:

max
θ

ETi∼T

[
Eτ∼πθ(·|Ti)

[
H∑
t=0

ri(st, at)

]]

3.2 Chess Reasoning Task Decomposition

We identify six fundamental chess reasoning tasks that capture essential components of chess
expertise:

1. Legal Move Generation: Generate all legal moves from a given position
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2. Piece Counting: Count pieces of specific types on the board

3. Position Prediction: Predict board state after a sequence of moves

4. Capture Identification: Identify all possible captures in a position

5. Forcing Move Detection: Recognize checks, captures, and threats

6. Check Recognition: Determine if the king is in check

Each task requires distinct processes while sharing fundamental chess knowledge, making them ideal
for multi-task learning that promotes both specialization and knowledge transfer.

3.3 Base Language Model

We use Qwen-2.5-3B-Instruct as our base language model, selected for its strong reasoning capabili-
ties, computational efficiency, and open availability. The model contains 3 billion parameters and has
demonstrated proficiency across diverse reasoning tasks, making it a suitable foundation for chess
learning while remaining tractable for extensive experimentation.

3.4 Reasoning Trace Generation

For each chess reasoning task, we generated 500 high-quality reasoning traces using a structured
format that promotes interpretable learning and explicit reasoning:

Trace Format:

<think>
[Step-by-step reasoning process]
- Analysis of current position
- Identification of relevant pieces
- Application of chess rules
- Logical deduction steps
</think>

<answer>
[Final answer in task-specific format]
</answer>

Example for Legal Move Detection:

<think>
Position: rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1
White just moved pawn e2-e4. Black to move.
Black knight on b8: can move to a6, c6, d7 (checking for obstacles).
Black knight on g8: can move to f6, h6.
Pawns can move forward one square if unoccupied.
</think>

<answer>
Na6, Nc6, Nd7, Nf6, Nh6, a6, a5, b6, b5, c6, c5, d6, d5, f6, f5, g6, g5, h6, h5
</answer>

Data generation leveraged Stockfish 16 for position evaluation and move verification, ensuring
high-quality ground truth labels across all reasoning tasks.

3.5 Task-Specific Reward Functions

We design binary reward functions ri : S ×A → {0, 1} for each task that provide precise feedback
on reasoning accuracy:
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Task Reward Function Description
Legal Moves r1(s, a) = 1[moves(a) = legal(s)] 1 if moves exactly match legal set
Piece Count r2(s, a) = 1[count(a) = true_count(s)] 1 if piece counts are accurate
Position Prediction r3(s, a) = 1[predict(a) = actual(s′)] 1 if predicted position matches
Capture Detection r4(s, a) = 1[captures(a) = true_captures(s)] 1 if captures correctly identified
Forcing Moves r5(s, a) = 1[forcing(a) = actual_forcing(s)] 1 if forcing moves detected
Check Recognition r6(s, a) = 1[check(a) = in_check(s)] 1 if check status correct

Table 1: Task-specific binary reward functions for chess reasoning evaluation

3.6 Multi-Task GRPO Training

3.6.1 Stratified Sampling Protocol

We extend Group Relative Policy Optimization (GRPO) to support multi-task learning through
stratified sampling that ensures balanced representation across all chess reasoning tasks:

1. Group Formation: Sample Gi ⊂ Di with |Gi| = 64 for each task Ti

2. Balanced Batching: Construct training batches with equal representation: B =
⋃6

i=1 Gi

3. Task-Conditional Generation: Generate outputs {oj}64j=1 for each group using task-specific
prompting

3.6.2 Modified GRPO Objective

We extend the standard GRPO objective to incorporate task-specific rewards and multi-task learning:

JMT-GRPO(θ) =
1

6

6∑
i=1

Eq∼Di,{oj}64
j=1∼πθ(·|q,zi)

 1

64

64∑
j=1

1

|oj |

|oj |∑
t=1

Âi,j,t∇θ log πθ(oj,t|q, oj,<t, zi)


(1)

where:

• zi is the task identifier for task Ti

• Âi,j,t =
ri(q,oj)−r̄i

σi
is the group-normalized advantage

• r̄i =
1
64

∑64
j=1 ri(q, oj) and σi is the group standard deviation for task i

This formulation ensures that each task contributes equally to the learning objective while maintaining
the variance reduction benefits of group-based advantage estimation.

4 Experiments

4.1 Experimental Setup

4.1.1 Model Variants

We evaluate three variants of the Qwen-2.5-3B model to understand the progressive impact of our
training pipeline:

• Baseline Qwen: The unmodified Qwen-2.5-3B-Instruct model, serving as our off-the-shelf
baseline to measure inherent chess reasoning capabilities of large language models.

• SFT Qwen: The baseline model after supervised fine-tuning on our curated dataset of 3,000
reasoning traces (500 per task). This variant isolates the impact of structured reasoning
supervision.

• GRPO Qwen: The SFT model further trained using our multi-task Group Relative Policy
Optimization framework. This represents our complete approach combining supervised
learning with reinforcement learning.
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4.1.2 Training Pipeline

Supervised Fine-Tuning Phase: We begin by fine-tuning the baseline Qwen model on our structured
reasoning trace dataset. The training uses standard cross-entropy loss over 3 epochs with a learning
rate of 5 × 10−5. Each reasoning trace follows our established format with explicit <think> and
<answer> sections to promote interpretable step-by-step reasoning.

Multi-Task GRPO Phase: Following SFT, we apply our extended GRPO algorithm with the
following hyperparameters:

• Learning rate: 1× 10−6 (reduced from SFT to ensure stable RL training)

• Group size: 64 samples per task per iteration (384 total samples per batch)

• KL divergence coefficient: β = 0.04 to balance exploration and policy stability

• Training duration: 2,000 iterations with evaluation every 100 steps

• Stratified sampling ensures equal representation across all six reasoning tasks

4.1.3 Evaluation Methodology

We evaluate model performance using task-specific accuracy metrics aligned with our binary re-
ward functions. For each chess reasoning task, we measure exact match accuracy between model
predictions and ground truth answers generated by Stockfish 16. Our evaluation spans two categories:

Multi-Task Evaluation: We assess average performance across all six fundamental chess reasoning
tasks (legal move generation, piece counting, position prediction, capture identification, forcing move
detection, and check recognition) to measure overall chess understanding capabilities.

Individual Task Evaluation: We conduct focused evaluation on two challenging reasoning bench-
marks:

• Best Move Prediction: Models must identify the optimal move in complex chess positions,
requiring integration of tactical and strategic understanding.

• Checkmate in One: Models must recognize forced mate patterns and execute the winning
move, testing pattern recognition and combinatorial reasoning.

Table 2: Performance Comparison for Qwen

Task Baseline Qwen SFT Qwen GRPO Qwen

6-Task Average 1.8% 10.2% 13%

Table 3: Performance Comparison for Individual Tasks

Task Random Policy Baseline Qwen GRPO Qwen

Best Move Prediction 31% 41% 44%
Checkmate in One 2.78% 17% 28%

5 Results

5.1 Quantitative Evaluation

Our experimental evaluation demonstrates substantial improvements through each stage of our
training pipeline across multiple evaluation metrics. The baseline Qwen model achieves only 1.8%
accuracy across the six-task average, confirming that large language models struggle significantly
with structured chess reasoning without targeted supervision. This poor performance reflects the
fundamental challenge of applying general language understanding to precise, rule-based domains
where exact adherence to complex logical constraints is required.
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Supervised fine-tuning yields dramatic improvements, raising performance to 10.2% accuracy—a
5.7× improvement over the baseline. This substantial gain validates our hypothesis that explicit
reasoning trace supervision can effectively guide language models toward structured problem-solving
approaches. The improvement demonstrates that even with synthetic reasoning traces, models can
learn to decompose complex chess positions into manageable reasoning steps, suggesting that the
structured format and step-by-step thinking process are crucial for developing chess understanding.

Our complete GRPO approach achieves 13% accuracy on the six-task average, representing a 7.2×
improvement over the baseline and a 1.3× boost over the SFT model alone. While the additional
gains from reinforcement learning are more modest than those from supervised fine-tuning, they
demonstrate that task-specific reward optimization can further refine reasoning capabilities once a
foundational understanding is established.

Table 4: Performance Comparison for Qwen

Task Baseline Qwen SFT Qwen GRPO Qwen

6-Task Average 1.8% 10.2% 13%

To better understand model capabilities on specific reasoning challenges, we evaluated performance
on two individual chess tasks that require sophisticated pattern recognition and multi-step planning.
On the Best Move Prediction task, our GRPO model achieves 44% accuracy compared to 31% for a
random policy and 41% for the baseline Qwen model. This represents a 1.41× improvement over
random chance and a 1.07× boost over the baseline, indicating meaningful progress on one of the
most challenging aspects of chess reasoning.

The Checkmate in One task demonstrates even more dramatic improvements. Our GRPO model
achieves 28% accuracy, compared to just 2.78% for a random policy and 17% for the baseline model.
This represents a 10× improvement over random performance and a 1.64× boost over the baseline,
suggesting that our approach is particularly effective for pattern-based tactical reasoning where
specific configurations must be recognized and appropriate responses generated.

Table 5: Performance Comparison for Individual Tasks

Task Random Policy Baseline Qwen GRPO Qwen

Best Move Prediction 31% 41% 44%
Checkmate in One 2.78% 17% 28%

The differential performance improvements across tasks reveal important insights about the nature
of chess reasoning in language models. Tasks with more structured patterns and clearer success
criteria (such as checkmate recognition) show larger improvements, while tasks requiring complex
strategic evaluation (such as best move prediction) show more modest gains. This suggests that
our approach is particularly effective for developing systematic reasoning skills but may require
additional sophistication to handle the nuanced evaluation required for high-level strategic play.

5.2 Qualitative Analysis

Analysis of reward trajectories during GRPO training reveals interesting patterns in multi-task learning
dynamics that provide insight into how language models develop chess reasoning capabilities. The
average reward across all six tasks shows steady improvement throughout training, with some tasks
demonstrating faster convergence than others, indicating that different reasoning skills develop at
different rates.

Individual task analysis reveals that capture identification and check recognition tasks show the most
consistent improvement trajectories, likely due to their more straightforward evaluation criteria and
pattern-based nature. These tasks involve recognizing specific board configurations and applying
well-defined rules, making them more amenable to the structured learning approach we employ.

In contrast, tasks requiring multi-step reasoning or complex position evaluation exhibit more volatile
learning curves. The reward trajectories for these tasks show periods of rapid improvement followed
by plateaus or temporary decreases, suggesting that these capabilities require more sophisticated
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Figure 2: Average reward trajectory of all six tasks during GRPO training shows steady improvement
with some volatility indicating exploration and learning dynamics.

Figure 3: Individual reward trajectories for find capture moves and check moves demonstrate different
learning patterns, with capture detection showing more stable improvement than check recognition.

reasoning patterns that are harder to learn through reinforcement learning alone. This volatility may
reflect the challenge of credit assignment in multi-step reasoning tasks where the final reward depends
on a chain of correct intermediate steps.

The learning dynamics also reveal the importance of task decomposition in our approach. By breaking
down chess understanding into component skills, we observe that models can develop competency
in simpler tasks (such as piece counting and legal move generation) before progressing to more
complex capabilities (such as forcing move detection and strategic evaluation). This progressive
skill acquisition validates our hypothesis that structured task decomposition facilitates more effective
learning than end-to-end approaches.

Figure 4 shows three representative checkmate-in-one positions from our evaluation set. White must
play Rh8+ to deliver checkmate. Our GRPO model successfully identifies the correct move to deliver
checkmate indicating meaningful pattern recognition capability.

Interestingly, we observed that the SFT model occasionally demonstrated substantial gains in task
accuracy even when the synthetic reasoning traces contained hallucinated intermediate steps. This
suggests that the structured reasoning format itself—with explicit thinking steps and systematic
problem decomposition—may be more important than the perfect accuracy of individual reasoning
steps. The model appears to learn the meta-skill of approaching chess problems systematically, which
then enables better performance even when specific reasoning steps are imperfect.
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Figure 4: Representative checkmate-in-one positions from our evaluation set. These tactical puzzles
require identifying forced mate patterns, demonstrating the type of pattern recognition our model
develops through multi-task training.

6 Discussion

6.1 Limitations

Our approach faces several significant limitations that constrain its current applicability and suggest
directions for future improvement. First, the absolute performance levels achieved, while substantially
improved over baselines, remain well below expert systems like Stockfish or human masters. The 13%
accuracy on our six-task average, while representing meaningful progress, indicates that substantial
work remains to achieve practical chess-playing strength.

Our experiments were constrained to a relatively small 3B parameter model, and it remains unclear
how our approach would scale to larger, more capable language models.

The reliance on synthetic training traces presents another limitation. While these traces offer a
scalable way to teach structured reasoning, they may not capture the full complexity of expert chess
reasoning and could introduce biases or oversimplifications that limit model performance. The
occasional presence of hallucinated steps in our reasoning traces, while not completely detrimental,
suggests that higher-quality trace generation methods could yield better results.

Finally, our evaluation focuses primarily on component chess skills rather than integrated gameplay.
While we demonstrate improvements in reasoning subtasks, translating these capabilities into coherent,
strategic gameplay remains an open challenge.

6.2 Comments and Difficulties Met During the Project

During the early stages of our GRPO training, we observed unexpectedly high performance from
the model. However, further investigation revealed that these results were misleading due to a
fundamental flaw in our dataset: the list of legal moves was consistently sorted by quality.

This led the model to adopt a superficial heuristic—selecting the first move in the list—rather than
learning genuine chess reasoning. As a result, it was rewarded not for understanding the position, but
for exploiting the ordering bias present in the data.

To address this issue, we applied a simple but effective fix: random shuffling of legal moves during
both training and evaluation. This forced the model to develop structured reasoning capabilities, as it
could no longer rely on positional biases in the move list.

7 Conclusion

We presented GRPO&Master, demonstrating that multi-task decomposition combined with rein-
forcement learning can significantly improve language model performance on structured reasoning
tasks. Our approach achieved a 7.2× improvement over baseline models through careful task design,
supervised pre-training, and stratified GRPO optimization. While absolute performance remains
below specialized systems, our work establishes a promising direction for interpretable chess AI and
structured reasoning more broadly. Future work should explore: (1) scaling to larger models and
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datasets, (2) incorporating search mechanisms while maintaining interpretability, and (3) extending
the framework to other formal domains. The key insight—that complex reasoning benefits from
explicit decomposition into learnable subtasks—offers a path toward more capable and explainable
AI systems in domains requiring precise, rule-based thinking.

8 Team Contributions

• Parth Sarthi: Set up distributed training and reward functions for GRPO using the torchtune
repository

• Salman Abdullah: Created and preprocessed multi-task learning datasets and generated
the chess reasoning traces for SFT

• Krrish Chawla: Experimented with various reward functions and created the evaluation
harness
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